Presented at the 2021 American Society of Gene & Cell Therapy (ASGCT) Annual Meeting

Non-adherent

Thaw PBMCsor

1h Pepmix pulse

Mature

exchange

Day 14-16

vtokines

17-19 Day 24-27 20-22

Day exchange Day 27-31 Day

31-36

PBMC freeze

cytokines

Day

Anastasiya Smith², John d'Aigle¹, Tara Shahim², Sherket Peterson¹, Thorsten Demberg², Derian Salas¹, Sam Chang², Aditya Tandon¹, Jeannette Crisostomo², Alex Riley¹, Tsvetelina Hoang², Jaime Avalos¹, Juan Vera², Jose-Manuel Collados¹. ¹Division of Healthcare, Consumer Segments & Service Robotics, ABB Inc, Houston, Texas 77021, USA; ²Marker Therapeutics, Inc., Houston, Texas, 77027, USA.

Introduction

AML is a malignant neoplasm of myeloid lineage arising in the bone marrow and outgrowing normal hematopoietic elements. In 2021, there will be estimated 20,000 new cases of AML with ~11,000 deaths.

MultiTAA-specific T cells from healthy donors were manufactured using the new process with one stimulation (new) or the old process with three stimulations (old). Graphs depict: Comparison of the number of interventions performed throughout the T cell expansion phase (A), frequency of naïve (B) or terminally differentiated T cells (C) as measured by flow cytometry, and antigen diversity as determined by IFN- γ ELISpot analysis (D), between the new and old manufacturing process.

NŸ

The original process

for generating mTAA-

specific T cells was

interventions and was

not compatible with

lengthy, required a

large number of

closed system

manufacturing

Robotic Automation of T Cell Generation for the Treatment of Acute Myeloid Leukemia (AML)

Methods

Results

New Manufacturing Process Relies on Reduced Number of Interventions and Yields **Products With Greater Antigen Specificity and Diversity Compared to Old Process**

Marker Therapeutics and ABB Robotics have partnered to co-develop the first **GMP robotic assistant YuMi®**

The ABB Concept details a cell culture assistant Robot for the use inside a GMP. The Dual Arm YuMi® extends into the biosafety cabinet and allows for simultaneous manipulation of the reagent bottle lids and use of a pipette aid to transfer liquids into a 1L **G-Rex device.**

YuMi® is More Precise and Accurate Than Human Operators in Pipetting Cycles of 25 mL Liquid Aliquots to Achieve a Target Volume of 250 mL

Speed and Precision

The speed, precision and accuracy of the robotic and human-operated process. Graphs depict: Comparison in the number of times (cycles) 250 mL of liquid are transferred in 1 hour using a robotic or human-operated process (A), and the precision and accuracy with which the total volume is transferred when using a robotic or human-operated process (B).

Author Email: asmith@markertherapeutics.com

Robotic Concept Design

GMP Robotic Assistant YuMi®

Back View

ABB Robotics for Healthcare

Robotic Automation of T-Cell Generation for the treatment of Acute Myeloid Leukemia (AML)

Results

Precision and Accuracy of 250 mL Transfer

Conclusions

We simplified the manufacturing process of mTAA-specific T cells by decreasing the number of interventions and shortening culture time, allowing automation.

The ABB robotic assistant was more precise and accurate than human operators in pipetting liquid, a critical step in cell therapy manufacturing, suggesting that the robot could revolutionize immunotherapy manufacturing worldwide.